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Abstract
Being creative in movement-based improvisational en-
vironments, such as dance floors, poses a difficult chal-
lenge for computers. It is particularly challenging for
computers to judge the creativity of inputs and re-
sponses in these open-ended domains. LuminAI is an
improvisational dance installation where an artificially
intelligent agent dances with a user. In this paper, we
enable the agent to judge the creativity of dance ges-
tures through the development of creativity metrics, in-
cluding the novelty, value, and surprise of a gesture.
We then use these metrics to implement a lead-and-
follow dynamic: when the user is performing less cre-
atively, the agent tries to lead by performing more cre-
atively. A user study is performed to compare the orig-
inal and lead-and-follow systems, with results showing
users found the lead-and-follow system’s gestures lower
in quality than the original, more surprising than the
original, and found the original system more engaging
and influential on their actions.

Introduction
Though natural for most humans, being creative in
movement-based improvisational environments, such as
sports games and dance floors, poses a difficult challenge for
computers. Agents with the ability to improvise movement
could be used to inspire human choreographers, create more
engaging training sequences in sports or physical therapy,
or generate less predictable non-player character actions in
video games.

One way to develop creative artificially intelligent (AI)
agents is to equip them with an understanding of what is
considered “creative”. Algorithms can measure the creativ-
ity of an artifact, such as a painting, poem, or dance move.
The AI then uses this metric to guide itself as it explores the
conceptual space, resulting in the generation of more cre-
ative artifacts.

Creativity can be defined in many ways, but one of the
leading definitions used in the computational creativity com-
munity describes a composite score of three parts: the nov-
elty, value, and unexpectedness of an artifact (Maher 2010;
Boden 2004). Previous research has provided a basis
for evaluating artifacts of creative systems (Maher 2010;
Maher and Fisher 2012). However, in real-time interac-
tive environments, efficiency is of utmost importance, so the

metrics need to be adapted to produce creative results while
not disrupting the experience.

One example of a research project where creativity met-
rics have been implemented in a real-time interaction is the
Robot Improv Circus. The Robot Improv Circus is an in-
stallation in the domain of improvisational acting, where
an agent plays an improv theater game with a user (Ja-
cob 2019). Improvisational acting, however, requires gen-
eral knowledge about the world to create an engaging per-
formance. The difficult task of amassing knowledge for
agents to use in human-agent interactions, or the knowledge-
authoring bottleneck, becomes more evident as the number
of possible meaningful actions increases. Since the space
of improv theater gestures is essentially any action a human
could perform in real life, the agent struggled to produce
meaningful acts.

Comparatively, the domain of dance is simpler to interpret
with computation, because it is more abstract (Jacob et al.
2013). Therefore, creativity metrics for an improvisational
AI dance agent can be developed as a stepping stone towards
a creative dance agent.

In this work, we will discuss the development of creativity
metrics for an interactive dance installation called LuminAI
(Figure 1). We present our implementation of these met-
rics, which uses the three-pronged definition of creativity
described earlier to judge gestures.

Evaluating the creativity metrics can indicate whether
they are useful in LuminAI and potentially other projects.
Previous research with the Robot Improv Circus has shown
that direct attempts to evaluate creativity metrics can be
tricky (Jacob 2019). In that experiment, for each metric,
participants were shown pairs of improv gestures and asked
to select which one they thought would score higher for that
metric. The results showed the developed metrics did not
match human ratings. However, it also showed that the par-
ticipants’ selections were close to random– meaning that ex-
periments asking humans to directly rate gestures based on
novelty, value, and surprise may be inherently flawed. Ja-
cob (2019) suggests that having people compare two ges-
tures without the greater context of an interaction may be
too challenging. In an effort to determine whether the met-
rics are useful without directly asking about them, we have
used the metrics to develop a potentially more engaging ver-
sion of LuminAI.



Figure 1: The LuminAI installation. The black figure on the screen
is the agent, while the pink figure is the user’s “shadow.”

Specifically, we have created a lead-and-follow dynamic
between the user and agent. When the human is performing
less creatively, the agent tries to lead by performing more
creatively, and vice versa. Finally, we will present the re-
sults from a preliminary user study investigating whether the
metrics are noticeable when the lead-and-follow dynamic is
switched on, whether the agent seems more creative when
leading, and whether the lead-and-follow dynamic is more
engaging for users. By focusing on the effects on the users’
experiences with the new system, we will gain insights into
the effectiveness of the creativity metrics.

The LuminAI System
LuminAI is an improvisational art installation in which the
user can dance with an artificially intelligent agent, shown
as a humanoid figure on a screen. The system uses a Mi-
crosoft KinectTM to sense a user’s movements, using pe-
riods of stillness to segment motion into individual ges-
tures. In this study, we utilize a discrete gesture mode,
where the agent does not dance while the user is perform-
ing, and no user input is recorded while the agent is per-
forming. The agent learns from its users by storing user
gestures into a database. The agent currently responds
with the following response modes (Jacob et al. 2013;
Jacob and Magerko 2015):

• Mimic: agent repeats the user’s gesture

• Transform: agent alters the user’s gesture (e.g. swap the
movements of the arms)

• Random Recall: agent pulls a random gesture from its
database

• Related-gesture Recall: agent pulls a gesture from its
database that is similar in calculated key aspects (such as
energy, size, and tempo)

Related Work
Defining creativity
Boden (2004) defines creativity in three parts: novelty (how
new the artifact is to the agent), unexpectedness (how sur-
prising the artifact is in the current context), and value (the
quality of the artifact). This definition has been widely ex-
plored within the computational creativity community. All
three components are necessary when trying to design an
AI agent which produces creative artifacts without human
input. Agents which use only novelty require human in-
put to guide them away from producing noise–in effect,
the humans provide the metric of value (Kar, Konar, and
Chakraborty 2015). Unexpectedness serves to account for
artifacts which may have been seen before, but surprise us
when presented in the current context.

Researchers have taken these three criteria and formalized
them mathematically (Wiggins 2006), proposed possible al-
gorithms to calculate these formalizations (Maher 2010;
Lehman and Stanley 2011; Maher and Fisher 2012), and
implemented such algorithms in attempts to make creative
agents (Jacob 2019). Another proposed element of creativ-
ity is typicality (how well the artifact conforms to the ex-
pectations of its domain) (Ritchie 2007); however, Jacob
(2019) argues this metric is accounted for so long as the sys-
tem does not maximize unexpectedness and novelty above
all else. The metric of value is present to prevent this, and
thus typicality would not provide any additional informa-
tion. We use Boden’s definition in this work and develop a
three-component algorithm for creativity based on novelty,
value, and unexpectedness (referred to from now on as sur-
prise).

Detailing each metric
Novelty Novelty can be defined as how different an ar-
tifact is from other artifacts within the same domain that
the observer has seen in the past (Boden 2004). Computa-
tionally, artifacts can be represented as vectors within some
space, where the dimensionality of the space is determined
by the number of features of the artifacts. Novelty is then
intuitively understood as how far away an artifact is from all
others, using any appropriate measure of distance.

One approach to determine novelty is to cluster the arti-
facts and determine to what degree the new artifact matches
the nearest cluster (Maher and Fisher 2012; Barto, Mirolli,
and Baldassarre 2013). Another approach utilizes Self-
Organizing Maps in conjunction with clustering, which also
reduces the dimensionality of the data and can provide use-
ful visualizations (Maher 2010; Maher and Fisher 2012).
A third approach involves determining the average distance
from the artifact to its K-Nearest Neighbors, where K is
some empirically defined natural number (Lehman and Stan-
ley 2011; Maher and Fisher 2012).

In LuminAI, the gestures are represented as motion-
capture data tracking each joint over time. This is an ex-
tremely high-dimensional representation, so any approach
will require dimensionality reduction first. An effective
pipeline for dimensionality reduction in LuminAI has al-
ready been produced (Liu et al. 2019). This pipeline re-



lies on feature reduction and Principal Components Analy-
sis to compress the data to a few (typically 2 or 3) dimen-
sions. Feature reduction refers to the condensing of a ges-
ture’s original motion-capture representation into a smaller
representation which does not include every single recorded
frame. Specifically, the pipeline calculates the 15 most rep-
resentative frames in any particular gesture, referred to as
the keyframes of a gesture, and stores only those frames.

The reduction produced by this pipeline loosely groups
gestures based on the major body parts involved in the move-
ments (e.g. leg and hip movements are grouped together,
left arm movements are grouped together). After viewing
this reduced data in a visualization tool, it became clear that
clustering is not an effective basis for measuring novelty be-
cause the data is sparse and the clusters are not separated
enough for the valid novelty calculations. Therefore, we use
average distance to the K-Nearest Neighbors on the reduced
data as a measure of novelty.

Value Value can be defined as the usefulness, perfor-
mance, and quality of an artifact to the observer, in the con-
text of the surrounding culture. Clearly, value is highly de-
pendent on the domain of artifacts being considered. We
look at a definition of value that can be applied to any do-
main before focusing on value in dance gestures for Lumi-
nAI.

Maher and Fisher (2012) describe measuring value as
similar to measuring novelty, that is, as a distance: this time
in a “performance space.” In their application of measuring
the creativity of laptop designs, they identified features rele-
vant to the value of a laptop design by hand, creating vectors
within a performance space. They then used a distance-to-
centroid measure to determine overall value: laptops farther
from the centroid of all the laptops were considered higher in
value. Ideally, the agent will be able to determine the value
of an artifact without human assistance. Therefore, we need
to allow the agent to distill a dance gesture vector into its
relevant features automatically.

The essential question here is: what features makes a
dance gesture valuable? Montero (2012) suggests that the
observer’s experience performing a particular dance style
makes them a better judge of the quality of a movement.
However, the agent in LuminAI has no perception of how it
“feels” to perform a movement, so we measure value solely
based on the agent’s visual perceptions.

Researchers have tried to understand why certain dancers
are better than others through the lens of attractiveness
(Neave et al. 2010; McCarty et al. 2017); they suggest
that the motivation behind perceptions of “good” and “bad”
dancing is reproductive. For example, McCarty et al. (2017)
identify greater hip movement as one quality of a good fe-
male dancer which may indicate female mobility. One possi-
ble method of determining the quality of a gesture, therefore,
is quantifying the amount of movement in certain key body
parts. An aggregate score for quality may then be obtained
from the various key body parts.

To avoid basing the value metric on attractiveness, which
may introduce notions of gender and sexuality to the project,
we also turn to a popular framework for understanding mo-

tion called Laban Movement Analysis (LMA) (Laban and
Ullmann 1971). This framework was developed primarily
for performers themselves, but also lends itself well to com-
putational analysis. LMA interprets movement with four as-
pects:

• Body: what each part of the body is doing and how body
parts are related and connected

• Effort: the qualities of the movement such as flow and
weight

• Shape: the overall shape of the body and how it changes

• Space: the movement’s interaction with the surrounding
environment

By using select LMA aspects as the relevant features for
value, the agent could interpret movement using the same
metrics that many human dancers use. A complication is that
each style of dance may require its own calibration of the as-
pects. Since those interacting with the system in this study
are novices who are not specialized in any style of dance, we
will not use LMA to tune LuminAI’s value metric to any one
style of dance. Instead, we will use the attraction-based def-
inition of quality dance gestures, mitigating potential biases
as much as possible. Future work could explore the use of
LMA for specific dance styles.

Surprise Surprise can be defined as the unexpectedness of
an artifact based on the observer’s expectations. As opposed
to novelty, an artifact can still be considered surprising even
if it has been seen before; surprise takes into account recent
events which shape an expectation.

Barto, Mirolli, and Baldassarre (2013) define two ways
to quantify surprise: 1) surprise as deviation from a pre-
diction, and 2) surprise as the degree of difference be-
tween the agent’s beliefs before and after an event. The
latter may be quantified using Kullback-Leibler divergence
(Barto, Mirolli, and Baldassarre 2013). The difference be-
tween a predicted gesture and the observed gesture may be
computed using a distance in the feature space, similar to
novelty. Maher and Fisher (2012) consider an artifact sur-
prising when it creates a new cluster within the conceptual
space; this artifact changes the agent’s model of expecta-
tion significantly. In another work, Maher (2010) notes that
surprise occurs when the observer has established a pattern,
which the artifact then violates.

We utilize the definition of surprise as deviation from an
expected dance gesture. We build expectations based on the
last movement performed by the human and/or agent. In
other words, we aim to find a dance move surprising if it de-
viates from the prediction built by the previous dance move.

Lead-and-follow human-agent interaction
Leading and following may create a more interesting user
experience as the agent no longer solely responds to the user;
it can also directly attempt to inspire the user. Lead-and-
follow dance agents have been developed in the past with
major limitations. Berman and James (2015) proposed a
dance agent which dances with higher or lower intensity in
response to its human partner. Our work is distinct in that



the agent is less limited in its possible gestures, the agent
uses creativity metrics as the basis for judging movement,
and most importantly, the agent is able to both lead and fol-
low the exchange. This may help the agent and human be
true equals in the interaction, leading to a more stimulating
experience for the user.

In the past, a lead-and-follow agent was built in LuminAI
(Winston and Magerko 2017). This version of the LuminAI
agent judged when to lead or follow based on the enthusiasm
of a gesture (how wide or high-tempo it is) rather than the
creativity of a gesture. The study found that users could tell
the difference between the lead-and-follow and original ver-
sions, but that the original version was preferred. By using
creativity metrics, we plan to build on this work by devel-
oping a lead-and-follow dynamic that is more engaging for
users than the one implemented by Winston.

Implementation

In this section, we first describe the implementation of the
creativity metrics (novelty, value, and surprise) themselves,
and then how they are woven into a lead-and-follow strategy
for the LuminAI agent.

Novelty

The gestures, represented as high-dimensional motion cap-
ture data, are reduced to two dimensions using a modifica-
tion of the previously built dimensionality reduction pipeline
described in Related Work (Liu et al. 2019). The modifica-
tion focuses on the selection of the 15 keyframes. Rather
than calculate the most representative keyframes of a ges-
ture, which was inefficient, keyframes are chosen at uniform
intervals from the gesture. This modification changed the
chosen keyframes only slightly, leading to approximately
the same reduction. The reduction seemed to preserve the
pipeline’s ability to group gestures loosely based on which
body parts were involved, while running much faster.

In this space, we calculate the novelty of a gesture as
the average distance to its K-Nearest Neighbors (with K=5
yielding the best spread of novelties). The K-Nearest Neigh-
bors algorithm utilizes an R-Tree of known gestures to
quickly find neighbors. However, this novelty score would
not be entirely useful for programming: average distances
can only be compared to one another, and thresholds cannot
be set to distinguish “high” and “low” scores. In order to
scale the average distances to [0, 1], we pass them through an
adaptive scaling tool. This tool dynamically sets the highest
and lowest values it has seen thus far, allowing future num-
bers to be scaled to [0, 1] based on these values. This gives a
final novelty score.

To avoid getting extreme novelty scores (i.e., 0 or 1) as the
scaling tool sees its first few distances, a preprocessing step
is needed. On startup, the system calculates the novelty of
all gestures in the database, thereby passing all the unscaled
scores through the scaling tool. If the database is reasonably
varied, future gestures should not exceed the bounds set by
the scaling tool too often.

Figure 2: A gesture with high value.

Figure 3: A gesture with low value.

Value
Following the definition of a quality dance move as based
on attractiveness (Neave et al. 2010; McCarty et al. 2017),
certain key indicators of good dance moves from both men
and women are measured. By measuring the indicators for
both men and women outlined by Neave et al. (2010) and
McCarty et al. (2017), we hope to mitigate bias towards
any particular gender when evaluating value. Specifically,
we measure the amount of hip movement, shoulder move-
ment, asymmetrical thigh movement, and asymmetrical arm
movement from the motion capture data.

In order to measure these quantities, we determine the
average amount of movement between consecutive frames.
For efficiency, we first reduce the frame rate by half by re-
moving every other frame. For hip movement, we calcu-
late how far the left and right hip joints have moved be-
tween each pair of consecutive frames. These distances are
summed to get a total amount of hip movement in the ges-
ture. Then, we divide this by the number of frames in the
gesture to achieve the average hip movement per frame. The
average ensures that long gestures are not higher in value
than shorter ones simply because they accumulate more
movement. For shoulder movement, the same method is
used, but we track the left shoulder, right shoulder, and neck
joints instead.

For the asymmetrical thigh movement, we find the vec-
tors representing the change in position for the right and left
knee joints between each pair of consecutive frames. The
left and right change vectors are subtracted to find a vector
representing the asymmetrical movement between frames.
We take the magnitude of this vector as our measure. As
with hip movement, we sum this measure across all pairs of
consecutive frames and divide by the total number of frames
to achieve an average amount of asymmetrical thigh move-
ment in the gesture. For asymmetrical arm movement, the
same method is used, but we track the left and right elbows
and wrists instead.

Once all four measures are found, we sum them together
to get a total amount of valuable movement. As with nov-
elty, this score needs to be scaled to [0, 1] to be useful. An
adaptive scaling tool and preprocessing step are used in the



same manner. Gestures marked with high and low values are
shown in Figure 2 and Figure 3, respectively.

Surprise
Following the definition of surprise as deviation from an ex-
pectation (Barto, Mirolli, and Baldassarre 2013), we must
first define what the expected response gesture is when some
dance move is performed. In order to truly know the ex-
pected response, a large data set would need to be collected
consisting of many gestures with their observed response
gestures. This would be a direction for future work, but for
the initial development of the surprise metric in this paper,
we make the assumption that the least surprising response
would be mimicry. The next expected gesture, then, is the
same as the current gesture.

Now, the deviation from the expected dance gesture can
be defined. As Jacob (2013) describes, each gesture in Lu-
minAI has certain key values associated with it, based on
theories of movement, such as the energy, size, and tempo of
the movement. We define surprise using the difference be-
tween the expected and actual gestures in two aspects: one
to account for the difference in key values, and one to ac-
count for the difference in which body parts are used in the
gestures. We use both because one can imagine a gesture
that is surprising in only one aspect or the other. If a ges-
ture consisting of large, fast arm circles followed a gesture
of small, slow arm circles, it would be surprising (although
the same body part was used). If a gesture of big, sudden
kicks followed a gesture of big, sudden punches, it would be
surprising (although the gestures have similar key values).

To obtain the part based on the key values, the differ-
ence between the expected and actual gestures’ key values
are summed. This value is passed through an adaptive scal-
ing tool. To obtain the part based on body parts, we reduce
the dimensions of both the expected and actual gestures us-
ing the same dimensionality reduction pipeline used in the
novelty calculation. In this reduced space, the distance be-
tween the two gestures is measured. This value is passed
through another adaptive scaling tool. We chose to use sep-
arate scaling tools for the key value and body part compo-
nents because the values they produce may be on wildly dif-
ferent scales, and we do not want one measure to dwarf the
other when summed. The key values component and the
body parts component are then summed and passed through
a third adaptive scaling tool to obtain a final score for sur-
prise.

Lead-and-Follow Interaction
Leading is added as an additional response mode (adding
on to the existing modes of mimicking, random gesture re-
call, transformation, and related-gesture recall (Jacob and
Magerko 2015)). The LuminAI agent selects from these re-
sponse modes every time a user gesture is detected; it does
not take into account whether it had been leading previously.
Future work could explore incentivizing staying in leading
mode for several turns.

First, the LuminAI dance agent must decide whether to
lead based on the user’s gesture. If the measured novelty,

value, or surprise of the gesture is low, it tries to lead. Dur-
ing development, the thresholds for leading were tuned until
the agent led when the user performed known gestures, and
followed when the user performed new or interesting ges-
tures. Concretely, the agent leads when the novelty, value,
or surprise scores of the user’s gesture are below 0.5. When
leading, the agent selects a response gesture which has high
surprise in the context of the user’s gesture. The agent finds
the ten gestures with highest surprise from the database and
randomly selects one to perform.

Ideally, the agent would perform the gesture with the
highest value from the set of ten, but this response usually
returned the same gesture repeatedly. This could be because
gestures which measure high in value may be further away
from other gestures in both the spaces used to calculate sur-
prise (described earlier). Then, the same high-value gesture
will be one of the ten highest-surprise gestures, and it will
be returned every time the agent tries to lead. When not
leading, the agent falls back on its existing response modes.

Evaluation
Methodology
In order to evaluate the system, a preliminary user study was
performed. Subjects interacted with both the original Lu-
minAI system and the creative lead-and-follow system de-
scribed in this paper (referred to here as C-LuminAI) and
provided feedback in the form of a survey and interview.
Both systems were set to the discrete gesture mode described
earlier, where only one party is dancing at a time. This en-
sures that the last gesture performed by either party is al-
ways known, which eliminates confusion about which ges-
ture the dancers are responding to. Both systems’ agents
were allowed to perform one gesture per turn. Both systems
were pre-loaded with the same database of gestures. There
were about 30 gestures, all recorded by researchers who are
novice dancers. The systems were presented to subjects in a
randomized order. Both interactions were video recorded.

First, subjects were allowed to familiarize themselves
with the agent for a few turns, until the subject could suc-
cessfully complete a gesture and see the agent’s response.
Then, subjects interacted with each agent for about five min-
utes. Following the interactions, the users filled out a survey
which asked about their perceptions of the agent’s dance
moves, the levels of creative contribution and control both
parties had over the interaction, their preferred agent, and
the subject’s experience and comfort with dance. 5-point
Likert scales were used to ask subjects about qualities of
each system (e.g. ”The dance moves the agent performed
were good.” was asked using two Likert scales, one for each
agent).

A short interview was then conducted to collect qualita-
tive descriptions of the differences between the agents and
reasoning behind the participant’s preferred agent.

Results
Seven subjects participated in the study, all of whom were
college students with varying experience and comfort danc-
ing. The small sample size means the results are not statis-



Figure 4: Survey results. The halfway point of 3.5 responses is
marked. The number in each color bar shows how many

participants selected that response. Created using Datawrapper.

tically significant, but they show some interesting prelimi-
nary trends. The results are shown in Figure 4. Overall, the
survey data showed that LuminAI performed better gestures
than C-LuminAI, LuminAI’s gestures were less surprising
than C-LuminAI’s, LuminAI engaged participants better than
C-LuminAI, and C-LuminAI was not influenced by users as
easily nor influenced users as much as LuminAI. The sur-
vey data also showed that users felt they contributed more to
the creative ideation of the interaction than the agent in both
systems. Neither system was discernibly preferred overall.
One subject stated in the interview that ”neither one seemed
like they were responding, just doing what they wanted.”

The interview and video data showed that C-LuminAI per-
formed shorter, more inhuman movements which were more
varied than LuminAI’s. Six out of the seven participants con-
trasted C-LuminAI’s “short”, “jerky”, or “inhuman” move-
ments with LuminAI’s “longer”, more “human”, more “natu-
ral”, or “better” movements. Two participants said LuminAI
made them want to mimic the agent’s gestures because the
gestures were more realistic. One participant said that Lu-
minAI could better “mimic and complement” their gestures,
and another said LuminAI seemed to “pick up [their] new
moves”. Three participants mentioned that LuminAI was
“predictable” or “repetitive”, though one of these three said
the repetition made it more human-like. One participant said
C-LuminAI’s “weird moves made [them] want to be wilder”.

Discussion
The strongest result pointed to C-LuminAI giving nonhuman
movements. This is likely because while leading, the agent
was choosing among the most surprising gestures it could
find, without taking the value of those gestures into account.
This may have also led it to choose short gestures more of-
ten than LuminAI: the response modes of mimicking and
transforming the user’s move are chosen more often in Lumi-
nAI and are guaranteed to be similar in length to the user’s
gesture. That C-LuminAI gave strange gestures is actually
promising when paired with the result that users found C-
LuminAI more surprising. However, the agent seems to have
veered too far off the surprising end of gestures into ones
which limited the user’s ability to respond. Users felt that
LuminAI was able to influence their behavior and engage
them more with its better quality gestures. Interestingly, this
did not correlate to LuminAI being preferred overall.

In Winston and Magerko’s (2017) study of their lead-
and-follow agent in LuminAI, users preferred the original
agent. However, the users’ reasoning for preferring one sys-
tem to the other in that study were based on the increased
mimicry of the original agent, while in our study, users’ rea-
soning was more based on the quality and variety of gestures
performed. Both studies found some comments suggesting
users enjoy the agent mimicking them. Based on these find-
ings, a clearer lead-and-follow dynamic could allow users to
gain the satisfaction of having the agent mimic them while
the agent follows. Then, perhaps when the agent is leading,
users may be more receptive to and less disappointed by the
agent’s moves.

If the lead-and-follow dynamic is made clearer, and the
gestures chosen when the agent is leading made more valu-



able, then the agent may reap the benefits of both versions.
The lead-and-follow dynamic could be made clearer using
text prompts, visual highlighting of which party is leading,
and only using mimic and transform response modes when
following.

The gestures chosen when leading were strange because
C-LuminAI’s agent chooses one gesture randomly from the
top ten most surprising gestures, but it ought to factor in
value. This could be enabled by 1) vastly expanding the
database of gestures so there are many high-value gestures
that will often also be high-surprise when compared to the
user’s gesture, or 2) changing the dimensionality reduction
technique used on gestures so high-value gestures are not far
away from all other gestures. This may not be possible, be-
cause better gestures may be inherently different from other
ones. Either of these solutions would allow the leading mode
to choose a high-value gesture from the top ten most surpris-
ing gestures, instead of randomly selecting one of the ten.
The agent would then be able to be varied like C-LuminAI
when leading, but always have realistic gestures.

Overall, one of the most important factors in the user’s
perception of this system is the quality of the gestures per-
formed. The value metric described in this paper is a power-
ful tool for controlling the quality of gestures that are played
back (or perhaps even stored into memory). One important
addition would be factoring in the length of a gesture to the
value metric. In addition, the surprise metric seems to suc-
cessfully deliver more surprising gestures based on the sur-
vey results.

Future Work
Going forward, the developments described in this paper
can be used to make LuminAI a more engaging system and
to help explore the creative potential of the agent. The
lead-and-follow dynamic developed in this paper can be im-
proved and incorporated into LuminAI to reduce the repe-
tition of gestures and provide an interesting new response
mode. The creativity metrics can be used to explore creative
arcs, as described by Jacob (2019). Creative arcs are paths
the agent takes over its performance based on the creativity
metrics: for example, the agent may start performing with
high value and progress to low value, while also progress-
ing from low novelty to high novelty. Overall, the ability of
the agent to autonomously judge gestures for their creativ-
ity opens the door for new reasoning strategies and gesture
selection algorithms.

Conclusion
In this work, algorithms were developed to measure the cre-
ativity of a dance gesture in the improvisational dance in-
stallation LuminAI. These metrics judged the novelty, sur-
prise, and value of a gesture. These metrics can be used in
the future to control the quality of gestures performed by
the agent and add new reasoning strategies. The lead-and-
follow dynamic developed in this paper improved the vari-
ety of gestures performed by the agent, but decreased their
quality. Further development of this dynamic could increase

user engagement with the system or help explore creative
relationships between machine and human collaborators.
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